Abstract

In this article, we examine the collective particle dynamics, as expressed by the time correlation function of the longitudinal particle current density, of several different fluids in the vicinity of their freezing points/lines. We consider and compare results obtained by dynamic light scattering for a suspension of hard spheres and by molecular dynamics for fluids with hard sphere and Lennard-Jones interactions. The latter are performed along both an isotherm and an isochore. In all cases, we find a qualitative change in the collective dynamics, within the resolution of the data, when their respective freezing lines are crossed. We associate this change with the onset of caging. The new results for the Lennard-Jones fluid reported here confirm that the occurrence of caging, found previously for systems of hard spheres, is a more general feature that distinguishes a metastable fluid from one in thermodynamic equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.