Abstract
Paired whole-cell voltage recordings were made from synaptically connected spiny stellate neurons in layer 4 of the barrel field in young (P14) rat somatosensory cortex. When postsynaptic action potentials (APs) followed each of 5 presynaptic APs in a 10- or 20-Hz train by less than 25 ms, subsequent unitary EPSP amplitudes were persistently reduced. Induction of long-term depression (LTD) depended on activation of group II metabotropic glutamate receptors, but not on NMDA or AMPA receptors. Reducing postsynaptic increases in intracellular calcium ([Ca2+]i) by intracellular loading with a fast- (BAPTA) or a slow- (EGTA) acting Ca2+ buffer blocked synaptic depression. Analysis of EPSP failures suggested mediation of LTD by a reduction in release probability. We propose a mechanism by which coincident activity results in long-lasting reduction of synaptic efficacy between synaptically connected neurons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have