Abstract
Let T,S : A U B ? A U B be mappings such that T(A) ? B,T(B)? A and S(A) ? A,S(B)?B. Then the pair (T,S) of mappings defined on A[B is called cyclic-noncyclic pair, where A and B are two nonempty subsets of a metric space (X,d). A coincidence best proximity point p ? A U B for such a pair of mappings (T,S) is a point such that d(Sp,Tp) = dist(A,B). In this paper, we study the existence and convergence of coincidence best proximity points in the setting of convex metric spaces. We also present an application of one of our results to an integral equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.