Abstract

The development of wireless monitoring is currently restricted by the short lifetime of batteries, requiring frequent replacement. Utilization of abundant mechanical energy from the surrounding environment has attracted increasing attention in real-time monitoring. Herein, a coil-levitated hybrid generator was developed for the efficient harvesting of mechanical energy from mechanical motion. The novel coil-levitated structure adapted to the metal and magnetic environment. The output currents were systematically analyzed at different operation modes based on the unique combination of triboelectrification, electromagnetic induction, and piezoelectric effect. Under the excitation of vibration frequency and amplitude of 8 Hz and 5 mm respectively, the as-constructed triboelectric nanogenerator delivered a peak power density of 11.40 W/m3 at 10 MΩ. Meanwhile, the middle electromagnetic part and bottom piezoelectric generator provided peak power densities of 6.97 and 79.93 W/m2 at 10000 Ω, respectively. More importantly, the battery charging experiment was verified, in which a 30 mA h Li-ion battery can be charged from 2.57 to 3.27 V in about 90 min. In sum, a self-powered temperature and vibration monitoring system was successfully developed based on hybrid generator, promising for realizing wireless monitoring of mechanical equipment without any external power supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.