Abstract
As a new type of urban transit vehicle, Non-catenary trams using inductive power transmission technology get rid of the traditional overhead catenary. In engineering applications, coils assembled on the different tram bodies have inevitable differences due to the restrictions on the production process and other factors. Research shows tiny differences in self-inductance always lead to system detuning so as to causes an extreme descent of the system power factor. From the perspective of hardware design, the paper analyzes the system architecture and coil configuration for the dynamic charging trams with considering cost, system reliability, etc. Then, for the problem of power factor reduction caused by the differences in the self-inductance of the secondary windings, the article establishes a mathematical model with the maximum power factor as the goal and system parameters as constraints. And a complete system parameters design method is proposed. Finally, the global design and optimization of tram's electromagnetic coupling mechanism parameters are performed using the group method. The simulation result indicates that the method can meet the requirements of system operation and has a higher tolerance to the self-inductance differences of the secondary coils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.