Abstract

Rectifier line current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given service. The rectifier's output filter inductance determines the rectifier line current waveform, the line current harmonics, and the power factor. Classical rectifier analysis usually assumes a near-infinite output filter inductance, which introduces significant error in the estimation of line current harmonics and power factor. A quantitative analysis of single and three-phase rectifier line current harmonics and power factor as a function of the output filter inductance is presented. For the single phase rectifier, one value of finite output filter inductance produces maximum power factor and a different value of finite output filter inductance produces minimum line current harmonics. For the three phase rectifier, a near-infinite output filter inductance produces minimum line current harmonics and maximum power factor, and the smallest inductance that approximates a near-infinite inductance is determined. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.