Abstract
We determine several classes of smooth complex projective surfaces on which Zariski decomposition can be combined with vanishing theorems to yield cohomology formulae for all line bundles. The obtained formulae express cohomologies in terms of divisor class intersections, and are adapted to the decomposition of the effective cone into Zariski chambers. In particular, we show this occurs on generalised del Pezzo surfaces, toric surfaces, and K3 surfaces. In the second part we use these surface results to derive formulae for all line bundle cohomology on a simple class of elliptically fibered Calabi–Yau three-folds. Computing such quantities is a crucial step in deriving the massless spectrum in string compactifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.