Abstract

Abstract Göttsche gave a formula for the dimension of the cohomology of Hilbert schemes of points on a smooth projective surface $S$. When $S$ admits an action by a finite group $G$, we describe the action of $G$ on the Hodge structure. In the case that $S$ is a K3 surface, each element of $G$ gives a trace on $\sum _{n=0}^{\infty }\sum _{i=0}^{\infty }(-1)^{i}H^{i}(S^{[n]},\mathbb{C})q^{n}$. When $G$ acts faithfully and symplectically on $S$, the resulting generating function is of the form $q/f(q)$, where $f(q)$ is a cusp form. We relate the Hodge structure of Hilbert schemes of points to the Hodge structure of the compactified Jacobian of the tautological family of curves over an integral linear system on a K3 surface as $G$-representations. Finally, we give a sufficient condition for a $G$-orbit of curves with nodal singularities not to contribute to the representation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call