Abstract

Long-range, terrestrial quantum networks require high-brightness single-photon sources emitting in the telecom C-band for maximum transmission rates. For solid-state quantum emitters, the underlying pumping process, i.e., coherent or incoherent excitation schemes, impacts several photon properties such as photon indistinguishability, single-photon purity, and photon number coherence. These properties play a major role in quantum communication applications, the latter in particular for quantum cryptography. Here, we present a versatile telecom C-band single-photon source that is operated coherently and incoherently using two complementary pumping schemes. The source is based on a quantum dot coupled to a circular Bragg grating cavity, whereas coherent (incoherent) operation is performed via the novel SUPER scheme (phonon-assisted excitation). In this way, high end-to-end-efficiencies (ηend) of 5.36% (6.09%) are achieved simultaneously with a small multiphoton contribution g(2)(0) of 0.076 ± 0.001 [g(2)(0) of 0.069 ± 0.001] for coherent (incoherent) operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.