Abstract

Abstract Ultraviolet (UV) structural colors of avian feathers are produced by the spongy medullary keratin of feather barbs, but various physical mechanisms have been hypothesized to produce those colors, including Rayleigh scattering, Mie scattering, and coherent scattering (i.e. constructive interference). We used two-dimensional Fourier analysis of transmission electron micrographs of the medullary keratin of UV-colored feather barbs of the Blue Whistling Thrush (Myiophonus caeruleus) (Turdidae) to test the alternative hypotheses for production of those UV structural hues. The two-dimensional Fourier power spectra of the tissue reveal a ring-like distribution of peak periodicity at intermediate spatial frequencies (∼0.078 nm −1), which documents that Myiophonus medullary keratin is substantially nanostructured and equivalently ordered in all directions. This nanoscale spatial order falsifies a basic assumption of both the Rayleigh scattering and Mie scattering. A predicted reflectance spectrum based on the Fourier power spectra matches hue of the measured reflectance spectra of the feathers (345 nm). These results demonstrate that the Myiophonus medullary keratin is ordered at the appropriately nanoscale to produce the observed UV hues by coherent scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.