Abstract

We study two capacitively coupled double quantum dots focusing on the regime in which one double dot is strongly biased, while no voltage is applied to the other. Then the latter experiences an effective driving force which induces a ratchet current, i.e., a dc current in the absence of a bias voltage. Its current noise is investigated with a quantum master equation in terms of the full-counting statistics. This reveals, that whenever the ratchet current is large, it also exhibits some features of a Poissonian process. By eliminating the drive circuit, we obtain a reduced master equation which provides analytical results for the Fano factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.