Abstract

The propagation of an optical ultrashort pulse in a resonance Bragg grating is considered taking into account the polarisation of electromagnetic radiation. It is assumed that the grating is formed by thin films containing two-level atoms with the triply degenerate upper energy level. The system of equations is derived for the envelopes of electromagnetic pulses counterpropagating in such a grating. In the long-wavelength (continual) approximation, the system of equations generalising the known system for scalar waves is obtained. The solutions corresponding to elliptically (in particular, linearly and circularly) polarised stationary pulses are found. An arbitrary degree of ellipticity is possible only in a medium with a preliminary prepared stage of resonance atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.