Abstract

We predict that coherent electromagnetic radiation in the 1-100 THz frequency range can be generated in crystalline materials when subject to a shock wave or soliton-like propagating excitation. To our knowledge, this phenomenon represents a fundamentally new form of coherent optical radiation source that is distinct from lasers and free-electron lasers. The radiation is generated by the synchronized motion of large numbers of atoms when a shock wave propagates through a crystal. General analytical theory and NaCl molecular dynamics simulations demonstrate coherence lengths on the order of mm (around 20 THz) and potentially greater. The emission frequencies are determined by the shock speed and the lattice constants of the crystal and can potentially be used to determine atomic-scale properties of the shocked material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call