Abstract

A quantum computing system is typically represented by a set of non-interacting (local) two-state systems—qubits. Many physical systems can naturally have more accessible states, both local and non-local. We show that the resulting non-local network of states connecting qubits can be efficiently addressed via continuous time quantum random walks, leading to substantial speed-up of multiqubit entanglement manipulations. We discuss a three-qubit Toffoli gate and a system of superconducting qubits as an illustration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call