Abstract

Light Detection and Ranging (LiDAR) is a powerful tool to characterize and track the surface geometry of solid objects. In a fire, however, no method has excelled at measuring three-dimensional shapes at millimeter precision while offering some immunity to the effects of flames. This paper applies coherent Frequency Modulated Continuous Wave Light Detection and Ranging to capture three-dimensional measurements of objects in fire at meters of stand-off distance. We demonstrate that despite the presence of natural gas flame depths up to 1.5 m obscuring the target, measurements with millimeter precision can be obtained. This is a significant improvement over previous work making the technique useful for many fire research applications. An approach to achieve sub-millimeter precision using spatial and temporal averaging during post-processing is presented. The technology is demonstrated in case studies of structural connection and vegetation response in fires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.