Abstract

We demonstrate that the sensitivity of nanoparticle detection on surfaces can be substantially improved by implementing synthetic optical holography (SOH) in coherent Fourier scatterometry (CFS), resulting in a phase-sensitive confocal differential detection technique that operates at very low power level (P = 0.016 mW). The improvement in sensitivity is due to two reasons: first, the boost in the signal at the detector due to the added reference beam; and second, the reduction of background noise caused by the electronics. With this new system, we are able to detect a 60-nm polystyrene latex (PSL) particle at a wavelength of 633 nm (∼λ/10) on a silicon wafer with an improvement in the signal-to-noise ratio (SNR) of approximately 4 dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.