Abstract

Strong interactions between magnetic materials and electrodynamic cavities mix together spin and photon properties, producing unique hybridized behavior. The study of such coupled spin-photon systems, known as cavity magnonics, is motivated by the flexibility and controllability of these hybridized states for spintronic and quantum information technologies. In this Tutorial, we examine and compare both coherent and dissipative interactions in cavity magnonics. We begin with a familiar case study, the coupled harmonic oscillator, which provides insight into the unique characteristics of coherent and dissipative coupling. We then examine several canonical cavity-magnonic systems, highlighting the requirements for different coupling mechanisms, and conclude with recent applications of spin-photon hybridization, for example, the development of quantum transducers, memory architectures, isolators, and enhanced sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.