Abstract
Dissipative coupling of resonators arising from their cooperative dampings to a common reservoir induces intriguingly new physics such as energy level attraction. In this study, we report the nonlinear properties in a dissipatively coupled cavity magnonic system. A magnetic material yttrium iron garnet is placed at the magnetic field node of a Fabry-Perot-like microwave cavity such that the magnons and cavity photons are dissipatively coupled. Under high power excitation, a nonlinear effect is observed in the transmission spectra, showing bistable behaviors. The observed bistabilities are manifested as clockwise, counterclockwise, and butterfly-like hysteresis loops with different frequency detuning. The experimental results are well explained as a Duffing oscillator dissipatively coupled with a harmonic one and the required trigger condition for bistability could be determined quantitatively by the coupled oscillator model. Our results demonstrate that the magnon damping has been suppressed by the dissipative interaction, which thereby reduces the threshold for conventional magnon Kerr bistability. This work sheds light on potential applications in developing low power nonlinearity devices, enhanced anharmonicity sensors and for exploring the non-Hermitian physics of cavity magnonics in the nonlinear regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.