Abstract

Abragam’s double-commutator spin operator method is used to analyse: 1) electron coherence transfer by intermolecular dipolar interaction between spin-label radicals, and 2) longitudinal and transverse electron spin relaxation by rotational modulation of the Zeeman and nitrogen-hyperfine anisotropies of isolated nitroxide spin labels. Results compatible with earlier treatments by Redfield theory are obtained without specifically evaluating matrix elements. Extension to single-transition operators for isolated nitroxides predicts electron coherence transfer by pseudosecular electron-nuclear dipolar interaction, in the absence of intermolecular dipolar coupling. This explains earlier experimental findings that coherence transfer (specifically dispersion-like distortion of the EPR absorption line shape) does not extrapolate to zero at low concentrations of nitroxide spin labels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call