Abstract

Fractional vortex beams exhibit a higher degree of modulation dimensions than conventional vortices, thus inheriting superior anti-turbulent transmission properties through the incorporation of additional coherence modulation. However, aliasing the mixed modes induced by coherence degradation makes the quantitative measurement of the topological charge in fractional vortex beams challenging. In this study, a coherence phase spectrum was introduced, and experimental demonstrations to quantitatively determine the fractional topological charge of partially coherent fractional vortex beams were performed. By leveraging the four-dimensional measurement of a partially coherent light field, the source coherence function was inversely reconstructed, and fractional topological charges were determined with high precision by extracting the phase spectrum of the coherence function. Laguerre–Gaussian, elliptical Gaussian, and plane-wave-fraction vortex beams with various degrees of coherence were used to demonstrate measurement precision. The proposed method is applicable to X-rays and electron vortices. It has potential applications in optical encryption, high-capacity optical communication, and quantum entanglement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call