Abstract

Vertical cavity semiconductor optical amplifiers (VCSOAs) are attractive devices for use in coherent optical amplification, especially where 2-D amplifier arrays are required. However, the coherence preservation quality of a VCSOA depends strongly on the bias condition, resonant wavelength mismatch, and the optical input power level. We characterize the coherence degree of a VCSOA as a function of these parameters by measuring interference fringe visibility with an interferometer. The dominant factors influencing the contrast of the fringes are the ratio of coherent, stimulated emission photons to amplified spontaneous emission (ASE) photons, and the spectral distortion of the amplified signal. Mostly, the overall gain and the saturation characteristic of the amplifier determine the ratio of stimulated emission to ASE. The spectral distortion of the signal is due to the narrow gain window of the VCSOA, but the effect significantly degrades the visibility only for relatively large wavelength mismatch from the gain peak. Analytic expressions may be used to identify the optimal bias current and optical input power to maximize the amplifier gain and visibility of the interference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call