Abstract

Traditional static spectrum allocation policies have been to grant each wireless service exclusive usage of certain frequency bands, leaving several spectrum bands unlicensed for industrial, scientific and medical purposes. The rapid proliferation of low-cost wireless applications in unlicensed spectrum bands has resulted in spectrum scarcity among those bands. Since most applications in Wireless Sensor Networks (WSNs) utilize the unlicensed spectrum, network-wide performance of WSNs will inevitably degrade as their popularity increases. Sharing of under-utilized licensed spectrum among unlicensed devices is a promising solution to the spectrum scarcity issue. Cognitive Radio (CR) is a new paradigm in wireless communication that allows sensor nodes as the unlicensed users or Secondary Users (SUs) to detect and use the under-utilized licensed spectrum temporarily. Given that the licensed or Primary Users (PUs) are oblivious to the presence of SUs, the SUs access the licensed spectrum opportunistically without interfering the PUs, while improving their own performance. In this paper, we propose an approach to build Cognitive Radio-based Wireless Sensor Networks (CR-WSNs). We believe that CR-WSN is the next-generation WSN. Realizing that both WSNs and CR present unique challenges to the design of CR-WSNs, we provide an overview and conceptual design of WSNs from the perspective of CR. The open issues are discussed to motivate new research interests in this field. We also present our method to achieving context-awareness and intelligence, which are the key components in CR networks, to address an open issue in CR-WSN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.