Abstract
Distracted driving has become a growing traffic safety concern. With advances in autonomous driving and connected vehicle technology, a mixture of various types of intelligent vehicles will become normal in the near future, while more factors that may cause driver cognitive distraction are emerging. However, there are rarely studies on distracted driving in mixed traffic environments. To fill this gap, we conducted a natural driving experiment with three representative events at a nonsignalized intersection in a mixed traffic environment and proposed a novel method of identifying cognitive distraction based on bidirectional long short‐term memory (Bi‐LSTM) with attention mechanism. Forty participants were recruited for each event, who completed three different cognitive distraction experiments induced by three different secondary tasks in contrast with a normal driving process when passing a nonsignalized intersection. Related driving performance and eye movement data were collected to train and test the Bi‐LSTM with attention mechanism model. Compared with the support vector machine (SVM) model, its recognition accuracy rate is 94.33%, which is 3.83% higher than that of the SVM in the total event, which has reasonable applicability for distraction recognition in a mixed traffic environment. Potential applications of this model include distraction alarm and autonomous driving assistance systems, which could avoid road traffic accidents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.