Abstract

A number of in vitro studies have shown that activation of muscarinic receptors by cholinergic agonists stimulates the nonamyloidogenic, alpha-secretase-processing pathway of amyloid precursor protein (APP). To determine whether increased cholinergic neurotransmission can modify the APP processing in vivo, we administered a muscarinic receptor agonist (RS86) to normal or aged rats and rats with severe basal forebrain cholinergic deficits (induced by 192 IgG-saporin). The levels of the cell-associated APP in neocortex, hippocampus, and striatum, as well as the secreted form of APP (APPs) in cerebrospinal fluid, were examined by Western blots. Additionally, we investigated the association between the altered APP levels and behavioral deficits caused by cholinergic lesions. We found that treatment with muscarinic receptor agonist resulted in decreased APP levels in neocortex and hippocampus and increased levels of APPs in cerebrospinal fluid. Regulation of APP processing by the muscarinic agonist treatment occurred not only in normal rats, but also in aged and cholinergic denervated rats that model this aspect of Alzheimer's disease. Interestingly, we found that elevation of APP in neocortex correlated with the cognitive deficits in water-maze testing of rats with cholinergic dysfunction. These data indicate that increased cholinergic neurotransmission can enhance nonamyloidogenic APP processing in intact and lesioned rats and that APP may be involved in cognitive performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.