Abstract
In order to optimize and analyze the cogging torque of hybrid stator motor, a hybrid stator motor is taken as the research project. The axial distribution of air gap magnetic flux density was analyzed, and the analytical formula of the cogging torque of the hybrid stator motor was derived. Combined with the cogging torque analytical formula, the superposition calculation method of cogging torque of hybrid stator motor was proposed, and the correctness of the superposition calculation method was verified by simulation analysis. The silicon steel segment and the amorphous alloy segment of hybrid stator core were optimized by using the uneven air gap structure, and the optimized results of the silicon steel segment and the amorphous alloy segment were obtained by two-dimensional simulation. Based on the results of two-dimensional simulation analysis, a three-dimensional model was built for simulation analysis. After optimization, the cogging torque of the motor was weakened by 48.1% and the torque ripple was reduced by 1.32%, while the loss and output torque remained basically unchanged.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have