Abstract

We develop the notion of the composition of two coalgebras, which arises naturally in higher category theory and the theory of species. We prove that the composition of two cofree coalgebras is cofree and give conditions which imply that the composition is a one-sided Hopf algebra. These conditions hold when one coalgebra is a graded Hopf operad $\mathcal{D}$ and the other is a connected graded coalgebra with coalgebra map to $\mathcal{D}$. We conclude with examples of these structures, where the factor coalgebras have bases indexed by the vertices of multiplihedra, composihedra, and hypercubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.