Abstract

In this study, MFe2O4/WS2 (M = Co, Cu, Mn, Ni) catalysts were synthesized to activate peroxymonosulfate (PMS) for sulfathiazole (STZ) degradation by decorating with WS2 on the surface of a series of spinel-type transition metal oxides. It was found that the CoFe2O4/WS2/PMS exhibited a greater ability to degrade sulfathiazole (STZ) than other systems. More specifically, the catalyst facilitated Fe3+/Fe2+ recycling to activate PMS efficiently and maintained synergies between CoFe2O4 and WS2 to degrade pollutants. The CoFe2O4/WS2 dosage, PMS concentration, solution pH, inorganic anions, and natural organic matter, which could affect the catalytic efficiency, were inspected. The experimental results manifested that the catalyst displayed outstanding performance in the pH range from 5 to 9. Besides, electron paramagnetic resonance spectroscopy and radical quenching experiments confirmed the presence of HO•, SO4•−, O2•−, and 1O2. Based on detected intermediates, the plausible degradation pathway of STZ was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.