Abstract

Based on the dimension of degeneracy, topological electronic systems can roughly be divided into three parts: nodal point, line and surface materials corresponding to zero-, one- and two-dimensional degeneracy, respectively. In parallel to electronic systems, the concept of topology was extended to phonons, promoting the birth of topological phonons. Till date, few nodal point, line and surface phonons candidates have been predicted in solid-state materials. In this study, based on symmetry analysis and first-principles calculation, for the first time, we prove that zero-, one- and two-dimensional degeneracy co-exist in the phonon dispersion of one single realistic solid-state material SnO$_2$ with \textit{P}4$_2$/\textit{mnm} structure. In contrast to the previously reported electronic systems, the topological phonons observed in SnO$_2$ are not restricted by the Pauli exclusion principle, and they experience negligible spin-orbit coupling effect. Hence, SnO$_2$ with multiple dimensions of degeneracy phonons is a good platform for studying the entanglement among nodal point, line and surface phonons. Moreover, obvious phonon surface states are visible, which is beneficial for experimental detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.