Abstract

We present simultaneous measurements of angular-dependent magnetoresistance and thermopower along all three crystal axes in (TMTSF)2PF6 for pressures to 7.4kbar and magnetic fields to 35T. (TMTSF)2PF6 under pressure shows the coexistence of spin density wave and metal-superconducting orders. We suggest that this coexistence results neither in microscopic coexistence nor in a new soliton wall phase, contrary to previous suggestions, but in phase separation into domains of the high-pressure metal and the low-pressure spin density wave phases. Simultaneous measurement of transport along all crystal axes allows us to unambiguously describe the domain structure, whereas the superconducting transition temperature and four independent Fermi surface-sensitive magnetoresistance signatures allow us to unambiguously characterize the coexisting metallic domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.