Abstract

We analyze the spatial propagation of wave-fronts in a biochemical model for a product-activated enzyme reaction with non-linear recycling of product into substrate. This model was previously studied as a prototype for the coexistence of two distinct types of periodic oscillations (birhythmicity). The system is initially in a stable steady state characterized by the property of multi-threshold excitability, by which it is capable of amplifying in a pulsatory manner perturbations exceeding two distinct thresholds. In such conditions, when the effect of diffusion is taken into account, two distinct wave-fronts are shown to propagate in space, with distinct amplitudes and velocities, for the same set of parameter values, depending on the magnitude of the initial perturbation. Such a multiplicity of propagating wave-fronts represents a new type of coexistence of multiple modes of dynamic behavior, besides the coexistence involving, under spatially homogeneous conditions, multiple steady states, multiple periodic regimes, or a combination of steady and periodic regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call