Abstract
Coenzymic activities of the following NADP derivatives were investigated: 2'-O-(2-carboxyethyl)phosphono-NAD (I), N6-(2-carboxyethyl)-NADP (II), 2'-O-(2-carboxyethyl)phosphono-N6-(2-carboxyethyl)-NAD (III), 2'-O-[N-(2-aminoethyl)carbamoylethyl]phosphono-NAD (IV), N6-[N-(2-aminoethyl)carbamoylethyl]-NADP (Va), 2',3'-cyclic NADP, and 3'-NADP. Derivatives I and IV show the effects of modification at the 2'-phosphate group, and derivatives II and Va show those at the 6-amino group of NADP. As for enzymes, alcohol, isocitrate, 6-phosphogluconate, glucose, glucose-6-phosphate, and glutamate dehydrogenases were used. These enzymes were grouped on the basis of the ratio of the activities for NAD and NADP into NADP-specific enzymes (ratio less than 0.01), NAD(P)-specific enzymes (0.01 less than ratio less than 100), and NAD-specific enzymes (ratio greater than 100). For NADP-specific enzymes, modifications at the 2'-phosphate group of NADP caused great loss of cofactor activity. The relative cofactor activities (NADP = 100%) of derivatives I and IV for these enzymes were 0.5-20 and 0.01-0.5%, respectively. On the other hand, NAD(P)-specific enzymes showed several types of responses to the NADP derivatives. The relative cofactor activities of I and IV for Leuconostoc mesenteroides and Bacillus stearothermophilus glucose-6-phosphate dehydrogenases and beef liver glutamate dehydrogenase were 60-200%; whereas, for B. megaterium glucose dehydrogenase and L. mesenteroides alcohol dehydrogenase, the values were 0.8-8%. For NAD-specific enzymes, these values were 20-50%. The relative cofactor activities of 2',3'-cyclic NADP and 3'-NADP were very low (less than 0.2%) except for beef liver glutamate dehydrogenase, B. stearothermophilus glucose-6-phosphate dehydrogenase, and horse liver alcohol dehydrogenase. Kinetic studies showed that the losses of the cofactor activity of NADP by these modifications were mainly due to the increase of the Km value. The mechanisms of coenzyme specificity of dehydrogenases are discussed. Unlike the 2'-phosphate group, the 6-amino group is common to NAD and NADP, and the effects of modification at the 6-amino group were independent of the coenzyme specificity of enzymes used for the assay. Derivatives II and Va had high relative cofactor activities (65-130%) for most of the enzymes except for isocitrate and glucose dehydrogenases (less than 1%) and L. mesenteroides alcohol dehydrogenase (20-60%). The cofactor activity of derivative III was generally lower than those of I and II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.