Abstract
Rising global food demand necessitates improved crop yields. Biostimulants offer a potential solution to meet these demands. Among them, antioxidants have shown potential to improve yield, nutritional quality, and resilience to climate change. However, large-scale production of many antioxidants is challenging. Here, we investigate Coenzyme M (CoM), a small, achiral antioxidant from archaea, as a potential biostimulant, investigating its effects on growth and physiology. CoM significantly increased shoot mass and root length of the model plant, Arabidopsis thaliana, in a concentration-dependent manner. Sulfur-containing CoM supplementation restored growth under sulfur-limited conditions in Arabidopsis, whereas similar recovery was not observed for other macronutrient deficiencies, consistent with it being metabolized. In tobacco, CoM increased photosynthetic light capture capacity, consistent with observed growth improvements. Interestingly, this effect was independent of carbon capture rates. Furthermore, CoM promoted early-stage shoot growth in various crops species, including tobacco, basil, cannabis, and soybean. Our results suggest CoM is a promising, scalable biostimulant with potential to modify photosynthesis and enhance crop productivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have