Abstract

Piezoelectric fiber composites were developed to overcome drawbacks of typical monolithic piezoceramic (PZT) actuators. Although piezoelectric fiber composites had many improvements over the monolithic PZT, there are still improvements. Thus, the single crystal piezoelectric fiber composite actuator is proposed. Single crystal piezoelectric materials such as PMN-PT have larger piezoelectric strain constants, higher bandwidth and higher energy density than polycrystalline counterparts. Piezoelectric fiber composites can improve the performance of various structures, and can be subject to wide temperature range where the thermoelastic behavior is important. Therefore, this paper studies the coefficients of thermal expansion (CTE) for single crystal piezoelectric fiber composites. The Macro Fiber Composite (MFC) as the piezoelectric fiber composite is considered. To calculate the effective properties of two orthotropic layers of the MFC, PMN-PT(or PZT)/epoxy and copper/epoxy layers, the rule of mixture is adopted. With the effective properties known for each layers, the two CTE of the MFC actuator are obtained from the classical lamination theory considering thermal effects. The difference of the CTE between the single crystal MFC and the standard MFC is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.