Abstract

In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρd of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P, the infimum over all such coefficients is given by the spectral radius of P – R, where R = limkPk and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.