Abstract
In this paper, we show how the time for convergence to stationarity of a Markov chain can be assessed using the Wasserstein metric, rather than the usual choice of total variation distance. The Wasserstein metric may be more easily applied in some applications, particularly those on continuous state spaces. Bounds on convergence time are established by considering the number of iterations required to approximately couple two realizations of the Markov chain to within ε tolerance. The particular application considered is the use of the Gibbs sampler in the Bayesian restoration of a degraded image, with pixels that are a continuous grey-scale and with pixels that can only take two colours. On finite state spaces, a bound in the Wasserstein metric can be used to find a bound in total variation distance. We use this relationship to get a precise O(N log N) bound on the convergence time of the stochastic Ising model that holds for appropriate values of its parameter as well as other binary image models. Our method employing convergence in the Wasserstein metric can also be applied to perfect sampling algorithms involving coupling from the past to obtain estimates of their running times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.