Abstract

Lead-free double cation metal halide perovskites have recently attracted considerable attention, with continuing research efforts focusing on the improvement of their stability and photoluminescence quantum yield (PL QY). In this study, Ce3+ has been co-doped together with Bi3+ into lead-free double perovskite Cs2AgInCl6 nanocrystals (NCs) in order to improve their crystallinity and PL QY. Both uncoordinated chloride ions and silver vacancies could be eliminated using this co-doping strategy, and the resulting Ce3+,Bi3+-co-doped Cs2AgInCl6 NCs showed adjustable PL emission peaks in the range of 589 to 577 nm by varying the doping amount of Ce3+ with a fixed feeding ratio of bismuth precursor set at 1%. Cs2AgInCl6 NCs doped with 1% Bi alone reached a PL QY of 10% for the PL peak centered at 591 nm, while those co-doped with 1% Bi and 2% Ce together achieved the highest PL QY of 26% for the PL peak centered at 580 nm. The use of Ce3+ as a dopant promoted the localization of self-trapped excitons to prevent PL quenching, although the ion's 5d excited state may potentially provide an energetically favorable indirect route for the radiative relaxation process. This also resulted in a blue shift of the PL maximum and increased the exciton binding energy, thus promoting the radiative recombination of self-trapped excitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.