Abstract
BackgroundPolyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein.MethodsWe carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed.ResultsNucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis.ConclusionsOur study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.
Highlights
Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary
Compositional properties of Large tumor antigen (LT-Ag) genes To confirm the effect of differences in composition on the codon usage patterns observed in 86 PyV species isolated from different hosts, we analyzed the nucleotide compositions of the complete sequences of the LT-Ag genes, as well as those of the DnaJ domain and helicase domain regions of the LT-Ag protein, in each virus (Table 4)
According to the nucleotide frequency at the third position of the codon, all sequences except the DnaJ domain coding sequences (CDS) of avian PyVs belonging to Group A were AT-rich, but at the individual nucleotide level, G and A were dominant over C and T
Summary
Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein. Polyomaviruses (PyVs) are non-enveloped doublestranded DNA viruses; a total of 86 PyV species have been classified by the International Committee on Taxonomy of Viruses. As mostly animal viruses were studied, the viruses seemed to be irrelevant to human diseases. Most mammalian PyVs do not directly cause severe acute disease in infected hosts. It is necessary to understand their evolutionary history and their interaction with their hosts, as well as to interpret their genetic information
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have