Abstract
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC=47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P=0.002, odds ratio (OR)=3.194), as did the GC content (P=0.016, OR=2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P<0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral-host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have