Abstract
We describe a computer vision system for observing facial motion by using an optimal estimation optical flow method coupled with geometric, physical and motion-based dynamic models describing the facial structure. Our method produces a reliable parametric representation of the face's independent muscle action groups, as well as an accurate estimate of facial motion. Previous efforts at analysis of facial expression have been based on the facial action coding system (FACS), a representation developed in order to allow human psychologists to code expression from static pictures. To avoid use of this heuristic coding scheme, we have used our computer vision system to probabilistically characterize facial motion and muscle activation in an experimental population, thus deriving a new, more accurate, representation of human facial expressions that we call FACS+. Finally, we show how this method can be used for coding, analysis, interpretation, and recognition of facial expressions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.