Abstract
The primary purpose of this article is to design an intelligent false data injection (FDI) attacks detection, isolation, and mitigation scheme for a class of complex microgrid systems with electric vehicles (EVs). First, a networked microgrid with an EV model is well established, which takes load disturbance, wind generation fluctuation, and FDI attacks into account so as to truly reflect the operation process of the complex system. Then, an intelligent hyper basis function neural network (HBF-NN) observer is designed to accurately estimate the state of the microgrids, learn, and reconstruct the possible attack signal online. Subsequently, a novel HBF-NN-based H∞ controller is skillfully designed to mitigate the negative impact of FDI attacks online, so as to ensure the normal operation of the complex systems in an unreliable network environment. Finally, a two-stage integrated intelligent detection and maintenance algorithm is summarized and one simulation is presented to provide tangible evidence of the feasibility and superiority of the proposed FDI attacks detection, isolation, and mitigation methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.