Abstract

Conventional COVID-19 testing methods have some flaws: they are expensive and time-consuming. Chest X-ray (CXR) diagnostic approaches can alleviate these flaws to some extent. However, there is no accurate and practical automatic diagnostic framework with good interpretability. The application of artificial intelligence (AI) technology to medical radiography can help to accurately detect the disease, reduce the burden on healthcare organizations, and provide good interpretability. Therefore, this study proposes a new deep neural network (CNN) based on CXR for COVID-19 diagnosis – CodeNet. This method uses contrastive learning to make full use of latent image data to enhance the model's ability to extract features and generalize across different data domains. On the evaluation dataset, the proposed method achieves an accuracy as high as 94.20%, outperforming several other existing methods used for comparison. Ablation studies validate the efficacy of the proposed method, while interpretability analysis shows that the method can effectively guide clinical professionals. This work demonstrates the superior detection performance of a CNN using contrastive learning techniques on CXR images, paving the way for computer vision and artificial intelligence technologies to leverage massive medical data for disease diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.