Abstract

The performance of optical wireless systems deteriorates to a large extent from the presence of turbulence and pointing error effects. To meet the typical bit error rate (BER) targets for reliable communications within the practical ranges of signal-to-noise ratio, error control coding schemes are often proposed. This paper investigates the error performance for convolutional coded on-off keying free-space optical systems through symbol by symbol interleaved channels characterized by strong turbulence and/or pointing error effects. We consider several channel types and derive exact analytical expressions for the pairwise error probability. These expressions are applied to obtain upper bounds on the BER performance using the transfer function technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call