Abstract
The adsorption of malachite green (MG) dye using coconut shell based activated carbon (CSAC) was investigated. Operational factors such as the effect of pH, initial dye concentration, adsorbent dosage, contact time, and solution temperature on the adsorption process were studied. Solution pH strongly affected the chemistry of both the dye molecule and CSAC in solution. Optimum dye removal was obtained at pH ≥ 8.0. Equilibrium was reached in 120 minutes contact time. The Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models were used to evaluate the adsorption data. The adsorption data fitted the Langmuir model most with maximum adsorption monolayer coverage of 214.63 mg/g. Pseudo-first-order, pseudo second-order, and intraparticle diffusion models were also used to fit the experimental data. Kinetic parameters, rate constants, equilibrium sorption capacities, and related correlation coefficients, for each model were calculated and discussed. Thermodynamic parameters such as ΔG0, ΔH0, and ΔS0 were evaluated and it was found that the sorption process was feasible, spontaneous, and exothermic in nature. The mean free energy obtained from D-R isotherm suggests that the adsorption process follows physiosorption mechanism. The results showed that coconut shells could be employed as a low-cost precursor in activated carbon preparation for the removal of MG dye from wastewaters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.