Abstract

Software cost estimation is an important phase in software development. It predicts the amount of effort and development time required to build a software system. It is one of the most critical tasks and an accurate estimate provides a strong base to the development procedure. In this paper, the most widely used software cost estimation model, the Constructive Cost Model (COCOMO) is discussed. The model is implemented with the help of artificial neural networks and trained using the perceptron learning algorithm. The COCOMO dataset is used to train and to test the network. The test results from the trained neural network are compared with that of the COCOMO model. The aim of our research is to enhance the estimation accuracy of the COCOMO model by introducing the artificial neural networks to it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.