Abstract

A new, fast, and accurate numerical algorithm to assess stability against ideal ballooning modes in general three-dimensional magnetic configurations of interest to controlled thermonuclear fusion is described. The code for ballooning rapid analysis (COBRA) performs this assessment by solving an eigenvalue problem in the form of a linear second-order ordinary differential equation along magnetic field lines in the configuration. An initial approximation for the eigenvalue is obtained from a fast second order matrix method. In COBRA, this approximate eigenvalue is further refined using a variational principle to obtain fourth-order convergence with the mesh size. Richardson's extrapolation is then applied to a sequence of eigenvalues to estimate the exact eigenvalue using the coarsest possible mesh, thus minimizing the computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.