Abstract

This study provides a structured literature review of the recent COllaborative roBOT (COBOT) applications in industrial and service contexts. Several papers and research studies were selected and analyzed, observing the collaborative robot interactions, the control technologies and the market impact. This review focuses on stationary COBOTs that may guarantee flexible applications, resource efficiency, and worker safety from a fixed location. COBOTs offer new opportunities to develop and integrate control techniques, environmental recognition of time-variant object location, and user-friendly programming to interact safely with humans. Artificial Intelligence (AI) and machine learning systems enable and boost the COBOT’s ability to perceive its surroundings. A deep analysis of different applications of COBOTs and their properties, from industrial assembly, material handling, service personal assistance, security and inspection, Medicare, and supernumerary tasks, was carried out. Among the observations, the analysis outlined the importance and the dependencies of the control interfaces, the intention recognition, the programming techniques, and virtual reality solutions. A market analysis of 195 models was developed, focusing on the physical characteristics and key features to demonstrate the relevance and growing interest in this field, highlighting the potential of COBOT adoption based on (i) degrees of freedom, (ii) reach and payload, (iii) accuracy, and (iv) energy consumption vs. tool center point velocity. Finally, a discussion on the advantages and limits is summarized, considering anthropomorphic robot applications for further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.