Abstract

Cobalt-based amorphous/nanocrystalline composite coatings have been grown by arc ion plating together with a specimen cooling system. With decreasing substrate temperature, the coatings undergo significant structure evolution. The degree of crystallization first decreases and subsequently increases as confirmed by X-ray diffraction. The cluster size first decreases and then remains constant as confirmed by transmission electron microscopy. The effect of substrate temperature on the evolution of the structure has been studied as a result of a competition between nucleation thermodynamics and kinetics of crystalline growth. With decreasing the substrate temperature, the microhardness and the critical load of the composite coatings firstly increased, and then remained almost constant. And the saturation magnetization revealed the opposite trend over the same range. The essence of these phenomena was ascribed to the microstructural variations caused by the decrease of the substrate temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.