Abstract

Cobalt(II) complexes with a series of non-steroidal anti-inflammatory drugs (diflunisal, flufenamic acid, mefenamic acid and niflumic acid) in the presence of nitrogen-(2,2′-bipyridylamine, 2,2′-bipyridine, 1,10-phenanthroline) and/or oxygen-donor ligands (methanol) have been synthesized and characterized with physicochemical and spectroscopic techniques. The deprotonated NSAID ligands are coordinated to Co(II) ion through their carboxylato groups in diverse binding modes. The crystal structures of complexes [Co(diflunisal-O)2(methanol)4], [Co(niflumato-O)2(methanol)4], [Co(flufenamato-O,O′)2(2,2′-bipyridylamine)], [Co(mefenamato-O,O′)2(2,2′-bipyridylamine)] and [Co3(flufenamato-O,O′)4(flufenamato-O,O,O′)2(2,2′-bipyridine)2] have been determined by X-ray crystallography. The interaction of the complexes with serum albumins was studied by fluorescence emission spectroscopy and the albumin-binding constants were determined. The ability of the complexes to scavenge 1,1-diphenyl-picrylhydrazyl, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and hydroxyl radicals was investigated and the complexes were more active than the corresponding free drugs. Spectroscopic (UV and fluorescence), electrochemical (cyclic voltammetry) and physicochemical (viscosity measurements) techniques were employed in order to study the binding mode of the complexes to calf-thymus (CT) DNA and to calculate the corresponding binding constants; for all complexes, intercalation was suggested as the most possible DNA-binding mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call