Abstract

The high cost and low adsorption capacity of primary metal-organic frameworks (ZIF-8) limit their application in heavy metal removal. In this paper, Co/Zn bimetallic MOF materials were synthesized with excellent adsorption performance for As5+. The adsorption reached equilibrium after 180 min and the maximum adsorption was 250.088 mg/g. In addition, Co-ZIF-8 showed strong selective adsorption of As5+. The adsorption process model of Co-ZIF-8 fits well with the pseudo-second-order kinetic model (R2=0.997) and Langmuir isotherm model (R2=0.994), and it is demonstrated that the adsorption behavior of the adsorbent is a single layer of chemical adsorption. In addition, when the adsorbent enters the arsenic-containing solution, the surface of Co-ZIF-8 is hydrolyzed to produce a large number of Co-OH active sites, and As5+ arrives at the surface of Co-ZIF-8 by electrostatic adsorption and combines with the active sites to generate the arsenic-containing complex As-O-Co. After four cycles, Co-ZIF-8 showed 80% adsorption of As5+. This study not only provides a new method to capture As5+ in water by preparing MOF with partial replacement of the central metal, but also has great significance for the harmless disposal of polluted water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call