Abstract

For the first time CoS-nanoparticles attached ZnS rods (CoS/ZnS composites) have been synthesizedusing cobalt(II)-ion-exchanged zinc-based biological metal-organic framework-1 (Zn-bio-MOF-1) as precursors by a solvothermal method. Among them, the cobalt(II)-ion-exchanged Zn-bio-MOF-1 was obtained by exchanging the dimethylammonium cations (Me2NH2+) of Zn-bio-MOF-1 with cobalt ions. A novel electrochemical sensor based on CoS/ZnS composites and molecularly imprinted polymers (MIPs) was proposed for rapid, sensitive, and highly selective detection of organochlorine pesticide chloroneb. The MIP film was obtained by cyclic voltammetry (CV), and differential pulse voltammetry (DPV) was used to detect chloroneb. Under the optimal conditions, the oxidation peak current density of chloroneb was linearly related to the concentration from 0.003 to 0.2μM and 0.2 to 3.2μM with a detection limit of 0.87nM (S/N = 3) and a sensitivity of 52.27 μA·μM-1·cm-2. The proposed sensor exhibits a favorable selectivity, stability, and reproducibility, and was applied to detect chloroneb residues in licorice, cucumber, river water, and soil samples with satisfactory results.Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.